

Фундаментальные основы новой энергетики

Зимняя школа ОИВТ РАН – 2026

Руководитель – К.Г. Косс

Стажировка **14 студентов 1-2 курсов** МФТИ

фонд Целевого Капитала Мфти Зимние каникулы **26 – 30 января** 2026 года

ОИВТ РАН, г. Москва

Команда проекта

Высококлассные учёные эксперты в научных направлениях ОИВТ РАН опытные научные руководители выпускники МФТИ и МЭИ

- д.ф.-м.н., акад. РАН, проф. **Петров Олег Фёдорович** директор ОИВТ РАН, зав. кафедрой физики высоких плотностей энергии МФТИ
- д.ф.-м.н. Васильев Михаил Михайлович -
- зам. директора ОИВТ РАН, зав. отделом пылевой плазмы
- д.ф.-м.н. **Левашов Павел Ремирович** зам. директора ОИВТ РАН, зав. теоретическим отделом им. Л.М. Бибермана
- к.т.н. **Беляев Иван Александрович** зам. директора ОИВТ РАН, лаб. инженерной теплофизики и возобновляемой энергетики
- к.ф.-м.н. **Моралёв Иван Александрович** зав. лаб. плазменной аэродинамики и стимулированного горения
- к.т.н. **Власкин Михаил Сергеевич** зав. лаб. энергоаккумулирующих веществ
- к.ф.-м.н. Фролов Александр Михайлович с.н.с. лаб. экстремальных энергетических воздействий
- к.ф.-м.н. Косс Ксения Георгиевна с.н.с. лаб. диагностики пылевой плазмы, зам. зав. кафедрой физики высоких плотностей энергии МФТИ

Краткое описание проекта

Студенты МФТИ 1-2 курсов **получат опыт научной работы** в реально действующих лабораториях одного из **ведущих научно-образовательных центров России**.

Присоединяясь к текущим экспериментам или выполняя поставленные им несложные задачи, они на практике познакомятся с основными научными направлениями **ОИВТ РАН – базовой организации трёх кафедр МФТИ** (физики высоких плотностей энергии, физики высокотемпературных процессов, вычислительной физики конденсированного состояния и живых систем).

Подробное описание проекта

Каждый участник Зимней школы будет проводить рабочий день в одной из лабораторий ОИВТ РАН, где под руководством нашего сотрудника будет выполнять поставленную ему научную задачу. Перечень лабораторий, их направлений работы и предлагаемых задач — на следующих слайдах. Также студентам будут прочитаны пять обзорных лекций о направлениях работы лабораторий, в которых они будут проходить стажировку.

Отдел пылевой плазмы

д.ф.-м.н., акад. РАН, проф. Петров О.Ф., д.ф.-м.н. Васильев М.М., к.ф.-м.н. Косс К.Г.

В последние годы значительное внимание уделяется активному броуновскому движению. В отличие от пассивных броуновских частиц, которые находятся в тепловом равновесии с окружающей средой, активные броуновские частицы способны преобразовывать энергию окружающей среды в кинетическую энергию собственного движения, в результате чего они оказываются вдали от равновесия. В зависимости от размера такие частицы называют нано- или микромоторы. В лабораториях отдела изучается поведение роя микромоторов и их динамика в различных средах: в вязкой жидкости, в газоразрядной плазме, в криогенном коллоиде (сверхтекучем гелии). Одним из фундаментальных свойств таких систем является их способность к самоорганизации и эволюции (усложнению).

В газоразрядной плазме механизм движения таких микромоторов обусловлен фотофорезом - поглощением лазерного излучения металлическими включениями на поверхности микрочастицы, что создает радиометрическую силу, которая, в свою очередь, приводит микрочастицу в движение. Имея возможность прецизионно изменять интенсивность лазерного излучения, возможно контролировать динамику таких броуновских микромоторов и их эволюцию. Во время прохождения стажировки студенты примут участие в экспериментальной работе по формированию роя активных микромоторов и управления ими, проведут диагностику их структурных и динамических характеристик.

Лаборатория инженерной теплофизики и возобновляемой энергетики

к.т.н. Беляев И.А.

В качестве теплоносителя в ряде проектов термоядерных установок и гибридных реакторов (термоядерного источника нейтронов) рассматривается расплав лития либо эвтектика свинец-литий, которые являются как теплоносителем, так и средой наработки трития.

Жидкие металлы и расплавы солей – электропроводные среды. В случае термоядерных устройств с магнитным и магнитно-инерциальным удержанием плазмы работа этих сред будет происходить при наличии сильных магнитных полей, что требует изучения **теплогидравлики** в конфигурациях, максимально приближенных по своей геометрии к реальным устройствам.

В ОИВТ РАН ведутся исследования путем изучения характеристик базовых геометрий — вынужденного течения в прямоугольных и круглых трубах струйных течений, обтекания препятствий, течений в комбинированных канальных системах и свободной конвекции в условиях совместного влияния как сильных магнитных полей, так и больших тепловых потоков. В распоряжении нашей исследовательской группы находятся магниты, способные создавать стационарные магнитные поля величиной до 2.7 Тл.

Во время прохождения стажировки по данному направлению **студенты ознакомятся с приборами и инструментами для создания и измерения стационарных и импульсных магнитных полей величиной от 50нТ до 2 Тл.** Получат практические навыки как измерений, так и работы с магнитными или экранирующими системами.

Лаборатория плазменной аэродинамики и стимулированного горения

к.ф.-м.н. Моралёв И.А.

Управление процессами течения воздуха и реагирующих сред в двигательных установках летательных аппаратов имеет первостепенное значение в авиации. Классические способы управления не годятся, когда речь идет об управлении очень мелкомасштабными или высокочастотными процессами, например, турбулентными вихрями в пограничном слое на крыле самолета или когерентными структурами в струе двигателя. В этом случае для воздействия на течение могут использоваться плазменные актуаторы – газоразрядные устройства, в которых воздействие на поток оказывается в результате тепловыделения или действия объемных сил электрической природы непосредственно на среду, что обеспечивает отсутствие инерции и высокое быстродействие таких устройств. Помимо потенциальных приложений, плазменные актуаторы находят свое применение В фундаментальных исследованиях турбулентных течений.

Лаборатория энергоаккумулирующих веществ

к.т.н. Власкин М.С.

За последние несколько веков концентрация **парниковых газов** в атмосфере Земли значительно увеличилась. Многообещающий **метод их утилизации - это культивирование микроводорослей** в газовоздушной среде CO_2 или дымовых газов. Ресурсы ископаемого топлива не бесконечны, поэтому необходимо развивать альтернативные методы получения энергии. Одним из них является получение **биотоплива из микроводорослей**. Лаборатория энергоаккумулирующих веществ ОИВТ РАН занимается, среди прочего, решением двух вышеперечисленных актуальных задач.

Студенты примут участие В экспериментах ПО выращиванию микроводорослей, освоят основные методы контроля состояния культур и скорости роста биомассы. Смогут протестировать СВОИ идеи оптимизации фотобиореакторов, построить математические модели, описывающие процесс роста микроводорослей. Протестируют качество полученной биомассы микроводорослей. Примут участие в экспериментах по синтезу искусственной нефти из биомассы микроводорослей.

Лаборатория экстремальных энергетических воздействий

к.ф.-м.н. Фролов А.М.

Лаборатория экстремальных энергетических воздействий ОИВТ РАН проводит передовые исследования теплофизических свойств сверхтугоплавких материалов – карбидов, нитридов и т.д. Эти материалы являются перспективными для применения в экстремальных условиях, например, в элементах термоядерных реакторов, обращенных к плазме.

Участникам проекта предлагается провести эксперимент по измерению параметров фазовых переходов в карбидах переходных металлов - веществах с одними из самых высоких температур плавления. Для начала студенты познакомятся с основным методом измерения высоких температур — пирометрией, а также методами лазерного нагрева вещества и оптической диагностики состояния поверхности. Далее будет сконструирован экспериментальный стенд, на котором будут измерены температуры начала плавления и кристаллизации карбида.

Теоретический отдел им. Л.М. Бибермана

д.ф.-м.н. Левашов П.Р.

Свойства веществ играют огромную роль в научно-технологическом развитии цивилизации и необходимы во всех областях человеческой деятельности: от строительства до сложнейших научных установок. До начала XXI века практически все свойства конденсированных веществ получали в экспериментах, часто весьма сложных и дорогостоящих. Сегодня многие свойства, такие как модуль Юнга, коэффициент Пуассона, теплоемкость, теплопроводность, вязкость, коэффициент отражения МОЖНО рассчитывать путем квантового моделирования суперкомпьютерах. Теоретический отдел ОИВТ РАН является одним из лидеров в России по разработке новых методов квантового моделирования, а также по расчетам различных свойств веществ на суперкомпьютерах, в том числе с использованием видеоускорителей и нейронных сетей.

Во время прохождения практики студенты получат представление о методах моделирования, научатся запускать задачи на суперкомпьютерах и выполнят расчеты уравнения состояния простых систем.

Обзорные лекции в рамках Зимней школы

Дата	Лектор	Тема лекции	
Понедельник, 26.01.2026	Петров Олег Фёдорович	Новая энергетика в ОИВТ РАН	
Вторник, 27.01.2026	Беляев Иван Александрович	Жидкометаллический теплообмен	
Среда, 28.01.2026	Власкин Михаил Сергеевич	Новые энергоносители для устойчивого развития: предпосылки и перспективы применения	
Четверг, 29.01.2026	Фролов Александр Михайлович	Сверхтугоплавкие материалы при экстремально высоких температурах	
Пятница, 30.01.2026	Левашов Павел Ремирович	Квантовая механика и "простые" вопросы о свойствах веществ	

Актуальность

Для студентов МФТИ (в частности, физтех-школы ЛФИ) выбор базовой кафедры — ответственная задача, которую они должны завершить уже к концу третьего семестра. В этом им помогает курс "Горизонты физики", знакомящий их с базовыми кафедрами физтех-школы. Но в рамках этого курса (1 пара в неделю и более 30 базовых кафедр) студенту зачастую сложно понять, есть ли у него тяга к задачам, которые решаются на кафедре. Особенно если эти задачи реализуются на крупных экспериментальных установках, расположенных за пределами МФТИ.

Мы предлагаем студентам-младшекурсникам

- использовать зимние каникулы для интенсивного погружения в исследовательскую работу
- получить комплексное впечатление о научной деятельности
- увидеть возможности дальнейшего профессионального развития в науке
- получить **наглядное представление о научных задачах**, решаемых в ОИВТ РАН (базовой организации трёх кафедр МФТИ)
- познакомиться с культурой лабораторного эксперимента.

Бенефициары проекта

Студенты

- получат навыки реальной научной работы
- научатся оформлять научные отчёты
- познакомятся с работой высокорейтингового научного института
- более осознанно подойдут к выбору базовой кафедры и темы дипломной работы

ΜΦΤΙ

- Зимняя школа расширяет и дополняет **процесс обучения** на базовой кафедре
- студенты выбирают **темы НИР** более **осознанно** → меньше переводов с кафедры на кафедру,
- выше увлечённость студентов научной работой → меньше отчислений ПСЖ и по неуспеваемости

Базовые кафедры ОИВТ РАН

Привлечём студентов, которые **действительно интересуются** задачами ОИВТ РАН, а не выбирают кафедру вслед за другом или по остаточному принципу

ФОНД ЦЕЛЕВОГО КАПИТАЛА МФТИ

Планируемый результат проекта

Желаемым результатом для ОИВТ РАН (и кафедр МФТИ, базирующихся в нём) будет увеличение притока заинтересованных в наших задачах студентов, у которых будет больше информации для выбора научного руководителя и темы диплома.

Мы надеемся, что ребята, прошедшие у нас Зимнюю школу, **почувствуют вкус к научной работе**, который поможет им найти своё место в нашем или в другом российском научном учреждении.

План реализации проекта

Nº	Этап	Краткое описание этапа	Сроки выполнения
п/п			
1	Набор участников	Реклама Зимней школы (соцсети и др.	Ноябрь-декабрь 2025
	Зимней школы	медиа МФТИ), набор группы до 14	
		человек	
2	Подготовительный	Коммуникация с участниками по	12-23 января 2026
	этап	электронной почте, выбор лаборатории	
		для стажировки, информирование о	
		графике работы Зимней школы	
3	Обучение и	9.20 – отправление микроавтобуса	26-30 января 2026
	практика	ОИВТ РАН из студгородка МФТИ	
		10.00 – 11.30 – обзорные лекции от	
		лабораторий-участников стажировки	
		(см. список ниже)	
		11.30 – 16.00 – работа в лабораториях с	
		перерывом на обед	
		16.00 – отъезд в студгородок МФТИ	
4	Отчёт	Сбор отчётов студентов о проделанной	2-16 февраля 2026
		работе. Подготовка отчёта для ФЦК	
		МФТИ	

Бюджет проекта

Общий бюджет проекта (сумма, запрашиваемая от ФЦК МФТИ) — **200 тыс. рублей**

Почему проект не может быть полностью профинансирован из бюджета МФТИ или иных источников?

Как бюджет МФТИ, так и бюджет ОИВТ РАН не предусматривает прямое выделение средств на проведение студенческих практик. Для проведения полноценной стажировки требуются финансовые активы.

Долгосрочное развитие проекта

Планируется повторение стажировки на следующий учебный год, привлечение молодых сотрудников (а также старшекурсников и аспирантов МФТИ, работающих в ОИВТ РАН) к работе со студентами.

Подразделение МФТИ, через которое будет проходить финансирование проекта

Финансирование через кафедру физики высоких плотностей энергии, физтех-школа ЛФИ

• Какие договорённости есть с руководителем подразделения?

Поддержка от руководства физтех-школы ЛФИ МФТИ.

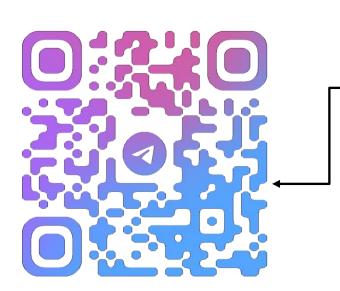
Достигнута устная договорённость с директором.

• Укажите, кто будет заниматься документооборотом для оплаты счетов через МФТИ:

Косс Ксения Георгиевна

• ФИО и контакты руководителя проекта/подразделения, который будет подписывать ФЛС:

Рогачёв Андрей Вячеславович Rogachev.AV@phystech.edu


• <u>ФИО и контакты ответственного исполнителя</u> Косс Ксения Георгиевна, <u>Xeniya.Koss@gmail.com</u>, +79036821433

Популяризация деятельности ФЦК МФТИ в ходе проекта

Роль ФЦК МФТИ будет постоянно подчёркиваться при проведении мероприятия:

- в информационных письмах студентам,
- при проведении **обзорных лекций**,
- в публикациях нашего <mark>телеграм-канала</mark> о Зимней школе.
- По договорённости с Отделом аналитики и коммуникаций ЛФИ планируется отчётная публикация о Зимней школе в медиа ЛФИ, где также будет упомянута роль ФЦК.
- На **сувенирной продукции**, которую планируется подготовить для студентов, лекторов и руководителей Зимней школы, будет размещён логотип ФЦК МФТИ.

